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1 Introduction to Linear Regression

As economists, we are frequently interested in the relationship between two economic variables X and Y ,
say X = years of schooling and Y = wages. First, we should investigate the summary statistics we reviewed
in the first week, for example, mean, variance, and correlation. However, focusing on the summary statistics
won’t get us far in questions regarding prediction and causality. That’s when we need an economic model.
As a starting point, we will focus on a linear model; we model the relationship between X and Y as linear.
Suppose we are given an sample {Xi, Yi} for i = 1, . . . , n of n observations, and we have the model

Yi︸︷︷︸
dependent variable

= β1︸︷︷︸
intercept

+ β2︸︷︷︸
slope

× Xi︸︷︷︸
independent variable

+ ei︸︷︷︸
error/residual term

Where the ei is the error term. Here, we assume that this model is the true relationship between X and Y ,
and we are interested in the parameters β1 and β2. These parameters are unknown.

• Why do we need this model?

– Econometric methodology examines and analyzes a sample of data from the population. After
analyzing the data, we make statistical inferences. These are conclusions about a population
based on the data analysis. Great care must be taken when drawing inferences. The inferences
are conclusions about the population from which the data were collected.

– Prediction: Predicting the value of one variable given the value of another, or others, is one of
the primary uses of regression analysis.

– Causality: A second primary use of regression analysis is to attribute or relate changes in one
variable to changes in another variable.

1.1 Assumptions of the Simple Linear Regression Model

• SR1 Econometric Model: All data pairs (yi, xi) collected from a population satisfy the relationship

Yi = β1 + β2Xi + ei, i = 1, ..., N

• SR2 Zero mean error : E[ei] = 0 for any i. This assumption is just a normalization.

• SR3 Constant X : P(Xi = xi) = 1 for any i. It helps when learning regression for the first time, but
it can be substituted by the exogeneity assumption E[ei | Xi] = 0 for any i.

∗Many thanks to all previous TAs for providing the notes. All mistakes are my own. Please con-
tact me at fdiazvaldes@g.ucla.edu if you spot any typos or mistakes. Some parts of this note rely on
https://scpoecon.github.io/ScPoEconometrics.
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• SR4 Homoscedasticity: V(ei) = σ2 for any i. If X is not constant, this assumption becomes
V(ei | X = x) = σ2 for any x. It is only important for the BLUE result and to simplify the exposition
of the material. In practice, no researcher assumes that this assumption holds

• SR5 Uncorrelated errors: C(ei, ej) = 0 for any i ̸= j. Unobserved variables are uncorrelated.

• SR6 Normal errors: ei ∼ N (0, σ2) for any i. Only to simplify the exposition of the material.
Versions of the CLT will guarantee that this is true asymptotically (that is when the sample size tends
to infinity).

1.2 Interpretation of Parameters in Linear Models

How do we interpret β2 in the model Yi = β1 + β2Xi + ei? Note that under assumptions

E[Y |X = x] = β1 + β2x

which implies

β2 =
∂E[Y |X = x]

∂x

On average, one unit increase in X is associated with β2 units change in Y .

1.3 Estimating the Model with OLS

One common method for estimating β1 and β2 is called Ordinary Least Squares, or OLS. This method aims
to minimize the sum of squared residuals.
Let b1 and b2 be arbitrary constants used as estimates for β1 and β2, respectively. We can rearrange the
model given above to calculate the residual (or error term) for each observation, (Yi, Xi).

1

ei = Yi − (b1 + b2Xi)

Summing up the squared error for each observation gives us the sum of squared residuals/errors (SSE),
conditional on our arbitrary choice of b1 and b2:

SSE(b1, b2) =

n∑
i=1

(Yi − (b1 + b2Xi))
2

Our job as econometricians is to find the best estimators of β1 and β2. Under the OLS methodology, this
means we need b1 and b2 such that the SSE is minimized. We denote the estimator with the “hat” symbol
as a mathematical convention.

(b̂1, b̂2) = arg min
b1,b2

n∑
i=1

(Yi − b1 − b2Xi)
2

This line should be read as “b̂1 and b̂2 are the estimators that minimize the SSE among all possible values
b1 and b2”. (argmin denotes the values/arguments that minimize the object.) So we know that

SSE(b̂1, b̂2) ≤ SSE(b1, b2) for all b1, b2

1.4 Some Terminology

• Estimators are formulas/functions of random variables, so they are random. In the section above, we

solved for b̂1 and b̂2, which are estimators for β1 and β2.

1Note that there will always be some error unless the data points form an exact straight line. If that is the case, we can
solve for β1 and β2 using any two points and do not need more complicated econometrics.
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• Estimates are realizations of the estimator that depend on the data a researcher uses. For example,
once you obtain some data {Xi = xi, Yi = yi}ni=1, you can plug them into the formulas for b̂1 and b̂2
to get estimates - these values, unlike the estimator, are not random.

• The fitted line is given by y = b̂1 + b̂2x.

• The fitted value, Ŷi is given by Ŷi = b̂1 + b̂2Xi.

• The difference between the true value, Yi, and the fitted value, Ŷi, is the fitted residual

êi = Yi − Ŷi = Yi − (b̂1 + b̂2Xi)︸ ︷︷ ︸
Ŷi

1.5 Estimators are BLUE

Gauss-Markov Theorem If the assumptions SR1 to SR5 are true, then estimators b̂1 and b̂2 are the best
linear unbiased estimators. Best means that the variance of these estimators is smaller than any other linear
and unbiased estimators. Linear comes from the fact that one can rewrite b̂1 and b̂2 as a linear function of
(y1, . . . , yn).

2 Practice Problems

2.1 Problem 1: demeaned variables and estimation without the regressor

Suppose you have the following sample {Yi, Xi}ni=1 and you are interested in the following linear model:

Yi = β1 + β2Xi + ei (1)

Let’s denote Y = 1
n

∑
i Yi and X = 1

n

∑
i Xi the average of the dependent variable and independent variable,

respectively.

1. Denote by Ỹi = Yi − Y and X̃i = Xi −X the demeaned variables. Starting from the functional form
(1), propose a model that employs {Ỹi, X̃i}ni=1 to estimate β2.

Solution:
We know that:

Yi = β1 + β2Xi + ei

Then, sum over i and divide by n.

Yi = β1 + β2Xi + ei

⇒ 1

n

∑
i

Yi︸ ︷︷ ︸
=Y

= β1 + β2
1

n

∑
i

Xi︸ ︷︷ ︸
=X

+
1

n

∑
i

ei︸ ︷︷ ︸
=e

So we have:

Y = β1 + β2X + e (2)

Subtracting the equation (1) with (2) we get:

Yi − Y︸ ︷︷ ︸
=Ỹ

= (β1 − β1)︸ ︷︷ ︸
=0

+β2 (X −Xi)︸ ︷︷ ︸
=X̃

+ ei − e︸ ︷︷ ︸
=ẽ
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Therefore, we will estimate β2 using the following equation:

Ỹi = β2X̃i + ẽi

So, we need to solve:

min
b2

n∑
i=1

(Ỹi − b2X̃i)
2

The first-order condition is:

∂

∂b2

[
n∑

i=1

(Ỹi − b2X̃i)
2

]
= 0

⇔ 2

n∑
i=1

(Ỹi − b̂2X̃i)(−X̃i) = 0

⇔ b̂2 =

∑n
i=1 ỸiX̃i∑n
i=1 X̃

2
i

2. Show that the coefficient b̂2 can be expressed as:

b̂2 =
C(Xi, Yi)

V(Xi)

Solution:
Using our estimated coefficient for b2:

b̂2 =

∑n
i=1 ỸiX̃i∑n
i=1 X̃

2
i

⇔ b̂2 =

∑n
i=1(Yi − Y )(Xi −X)∑

i=1(X −X)2

⇔ b̂2 =

∑n
i=1(Yi − Y )(Xi −X)∑

i=1(X −X)2
(1/n)

(1/n)

⇔ b̂2 =
C(Xi, Yi)

V(Xi)

3. Using this framework, how do you recover the estimated parameter for b1 without minimizing again?
You can assume that the sample is large enough so averages approximate expectations quite well.

Solution:
We know that:

Y = b1 + b2X + e︸︷︷︸
E[ei]=0

Therefore,

Y = b̂1 + b̂2X

⇔ b̂1 = Y − b̂2X

4. Now, suppose that you face the following linear model without an independent variable, just the
constant:

Yi = b1 + ei
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Find the expression of the estimator for b1. Then, give an intuitive explanation of your result. Hint:
A graphical illustration can help visualize intuition.

Solution:
The error can be written as ei = Yi − b1. Hence, the minimization problem is:

min
b1

n∑
i=1

(Yi − b1)
2

The FOC is:

∂

∂b1

[∑
i=1

(Yi − b1)
2

]
= 0

⇒ 2

n∑
i=1

(Yi − b̂1)(−1) = 0

⇔ b̂1 =
1

n

n∑
i=1

Yi = Y

2.2 Problem 2: wage rate and years of schooling
2 Consider the following linear model based on the Cubic function:

wi = β1 + β2e
3
i + εi,

where

1. wi means daily wage measured in dollars of individual i. Let’s label this variable by wage.

2. ei means years of education, measured in years of schooling of individual i. Let’s label e3i by educ3.

3. εi is the error.

The STATA Output for this linear regression is given below:

Answer the following questions based on the regression output:
Question 1. What is the expected wage for a person with ten years of education?

(a) 15

(b) 50

(c) 100

2These questions were taken from the practice midterm provided by Professor Pinto during Spring 2024
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(d) 150

(e) 500

Solution: The estimated coefficients from the STATA output are β̂1 = 100 and β̂2 = 0.05. So, the expected
wage for a person with ten years of education is given by

E[Y |x0 = 10] =b̂1 + b̂2 · x3
0

=b̂1 + b̂2 · 103

=100 + 0.05 · 103

=150

Question 2. What is the effect of an additional year of education for a person with ten years of education?

(a) 15.66

(b) 16

(c) 16.55

(d) 17

(e) 18.66

Solution: Note that the question asks for one year more, not for the marginal effect. Hence, the answer
does not rely on derivatives. Instead, let’s take the difference between the expected wage for an individual
with eleven years of education and an individual with ten years of education.

E[Y |e = 11]− E[Y |e = 10] =(b̂1 + b̂2 · 113)− (b̂1 + b̂2 · 103)

=b̂2 · (113 − 103)

=0.05 · 331
=16.55

Question 3. What is the marginal effect of education for a person with ten years of education?

(a) 13

(b) 14

(c) 15

(d) 16

(e) 17

Solution: Here, we are asked about the marginal effect we need to take a derivative with respect to years
of education:

∂E[Y |e]
∂e

=3 · b̂2 · e2

Now, we evaluate the expression using e = 10

=3 · 0.05 · 102

=15
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Problem 3: Ice creams and regression
3 An ice cream vendor at UCLA football games wants to know how many ice creams to stock before each
game so she doesn’t run out and isn’t left with too many unsold ice creams. She determines that weather is
likely a large factor in the variation of ice creams sold and estimates the following relationship between ice
cream sales and the temperature based on 32 home games

ŷ = −240 + 8x,

where ŷ is the predicted number of ice creams sold, and x is the temperature in degrees Fahrenheit.

(a) Interpret the estimated slope and intercept. Do the estimates make sense? Why, or why not?

Solution: -240 is the intercept; it is the estimate of ice creams sold when the temperature is zero
degrees Fahrenheit. This doesn’t make much sense since we probably won’t operate the ice cream
stand when the temperature is zero degrees! (Hint for me: 0 degrees Fahrenheit equals -17 degrees
Celsius)

8 is the slope term. In this context, on average, an increase of 1 degree (change in X) is associated
with an increase of 8 in sales (change in Y ).

(b) When the temperature on game day is predicted to be 80 degrees Fahrenheit, how many ice creams is
the vendor expected to sell?

Solution: Plug in x = 80 to find that the vendor expects to sell −240 + 8 · 80 = 400 ice creams.

(c) Is there a temperature at which she is not expected to sell ice cream? If so, what is it?

Solution: Here, we want to solve for the temperature x so that we expect zero sales y. So
0 = −240+8x yields x = 30. So, if it is thirty degrees outside, the vendor expects to make no sales.

(d) Sketch a graph of the estimated regression line.

Solution:

20 40 60 80 100

−240

200

400

600

x

ŷ

ŷ = −240 + 8x

3This problem is taken, or modified, from the fourth edition of ”Principles of Econometrics”, by Hill, Griffiths, and Lim.
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