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1 Functional form

The starting point in all econometric analyses is economic theory. What does economics say about the
relation between food expenditure and income, holding all else constant? We expect a positive relationship
between these variables because food is a normal good. But nothing says the relationship must be a straight
line. We do not expect that as household income rises, food expenditures will continue to increase indefinitely
at the same constant rate. Instead, as income increases, we expect food expenditures to rise, but we expect
such expenditures to increase at a decreasing rate. In the economic context of the food expenditure model,
the marginal propensity to spend on food is greater at lower incomes, and as income increases, the marginal
propensity to spend on food declines.

In light of the previous paragraphs, we might need to transform the variables of the model while keeping the
model linear in the coefficients. Below is a list of non-linear models. Of course, you can transform Yi or
Xi and run OLS, so which model you use will depend on the context.

Yi = β1 + β2X
2
i + εi (Quadratic Model)

Yi = β1 + β2X
3
i + εi (Cubic Model)

Yi = β1 + β2 log (Xi) + εi (Linear-log Model)

log (Yi) = β1 + β2Xi + εi (Log-linear Model)

log (Yi) = β1 + β2 log (Xi) + εi (Log-log Model)

1.1 Interpreting the coefficients

Recall that the slope for any model is given by: ∂E[y | x]/∂x In the simple model, y = β1 + β2x + ε,
the interpretation is straightforward: β2 = ∂E[y | x]/∂x. However, don’t rush to interpret the effect of a
change in x as just β2 in other models. The interpretation is somewhat different for the log-log, log-linear,
and linear-log models. In the TA session, we will discuss how to interpret the coefficients for these models,
including the respective intuition.

Model Slope

Linear Y = β1 + β ·X + ε β2

Quadratic Y = β1 + β2 ·X2 + ε 2β2x
Cubic Y = β1 + β2 ·X3 + ε 3β2

2x

Table 1: Examples of models and slopes

∗Many thanks to all previous TAs for providing the notes. All mistakes are my own. Please get in touch with me at
fdiazvaldes@g.ucla.edu if you spot any typos or mistakes.
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1.2 Testing for non-linearities (totally optional)

The Ramsey Regression Equation Specification Error Test is a general specification test for the linear re-
gression model. More specifically, it tests whether non-linear combinations of the explanatory variables help
to explain the response variable.
The null model is

yi = β1 + β2xi + εi

which is estimated by OLS, yielding predicted values ŷi = β̂1 + β̂2xi. Now let

zi =

 ŷ2i
...
ŷki


be a (k − 1)-vector of powers of ŷi. Run the auxiliary regression

yi = β1 + β0xi + γ1ŷ
2
i + . . .+ γk−1ŷ

k
i + εi

By OLS, and form the Wald statistic WT for H0 : γ1 = . . . = γk−1 = 0. It can be shown that under
the null hypothesis, WT ∼ χ2

k−1. Thus, the null hypothesis is rejected at the α% level if WT exceeds the
upper α% tail critical value of the χ2

k−1 distribution. If the null hypothesis that all γ coefficients are zero is
rejected, then the model suffers from misspecification. To implement the test, k must be selected in advance.
Typically, small values such as k = 2, 3 or 4 seem to work best.
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2 Confidence intervals

Let’s assume that assumptions SR1-SR6 hold for the simple linear regression model. In this case, we know
that given x, the OLS estimators β̂1 and β̂2 have normal distributions. For example, the normal distribution
of β̂2 is

β̂2 | x ∼ N

(
β2,

σ2∑
(xi − x̄)

2

)

From there, we can get the standardized normal random variable Z for β̂2 as:

Z =
β̂2 − β2√

σ2/
∑

(xi − x̄)
2
∼ N (0, 1)

From your introduction to statistics course, you know that:

P(−1.96 ≤ Z ≤ 1.96) = 0.95

Manipulating this last expression, we can get:

P

−1.96 ≤ β̂2 − β2√
σ2/

∑
(xi − x̄)

2
≤ 1.96

 = 0.95

⇔ P
(
β̂2 − 1.96

√
σ2/

∑
(xi − x̄)

2 ≤ β2 ≤ β̂2 + 1.96
√
σ2/

∑
(xi − x̄)

2

)
= 0.95

This defines an interval that has a probability of 0.95 of containing the parameter β2. However, we don’t
know the parameter σ2, which also has to be estimated. Recall that ε̂i = yi − (β̂1 − β̂2xi), the estimator
of σ2 is σ̂2 =

∑
i ε̂

2/(N − 2). By using σ̂2, we are changing the distribution of the statistic from a normal
distribution to a t-student distribution with N − 2 degrees of freedom,

t =
β̂2 − β2√

σ̂2/
∑

(xi − x̄)
2
=

β̂2 − β2√
v̂ar
(
β̂2

) =
β̂2 − β2

se
(
β̂2

) ∼ t(N−2)

It looks like the standard normal distribution, except it is more spread out, with a larger variance and
thicker tails. A single parameter controls the shape of the t-distribution called the degrees of freedom, often
abbreviated as df. However, as N → ∞ the t-student distribution converges to a N (0, 1).

We can find a ”critical value” tc from a t-distribution such that P (t ≥ tc) = P (t ≤ −tc) = α/2, where α is
a probability often taken to be α = 0.01 or α = 0.05. That is, we are looking for tc such that:

P(−tc ≤ t ≤ tc) = 1− α

This last statement relies on the t-student distribution being symmetrical for df > 3.
Suppose that α = 0.05 when we are looking for:

P
[
−t(0.975,N−2) ≤ t ≤ t(0.975,N−2)

]
= 0.95

Putting all these bits together, we got:

P

−tc ≤
β̂k − βk

se
(
β̂k

) ≤ tc

 = 1− α

⇔ P
[
β̂k − tc se

(
β̂k

)
≤ βk ≤ β̂k + tc se

(
β̂k

)]
= 1− α
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Practice Questions

Question 1

Let the simple regression model Y = β1 + β2 ·X + e. Consider the inference that tests the null hypothesis
H0 : β2 = 0 against H1 : β2 ̸= 0 at significance level α. Which of the statements is false?

(a) If the standard error of β̂2 decreases, then it is more likely to reject H0, (everything else constant).

(b) The higher the absolute value of β̂2, the more likely it is to reject H0 (everything else constant).

(c) The higher the significance level α, the more likely it is to reject H0 (everything else constant).

(d) Hypothesis H0 : β2 = 0 is not rejected whenever the value 0 belongs to its confidence interval (with a
confidence level of 1− α ).

(e) The larger the sample size, the more likely it is to reject H0 (everything else constant).

(f) The higher the p-value, the more likely you are to reject H0.

Answer: the correct answer is (f).

Question 2

Consider the following regression model:

Yi = β1 + β2xi + ϵi,

for i = 1, . . . , N . Let ei ∼ N
(
0, σ2

)
. That is, ei has a distribution whose mean is 0, and its variance is σ2.

Let

s2x =
1

N

N∑
i=1

(xi − x̄)
2
,

where

x̄ =
1

N

N∑
i=1

xi

One ran a regression of y on x and obtained the following estimates for β1 and β2 : b̂1 = 4, b̂2 = .5. Define
x∗
i = 10× xi. If one were to run a regression of y on x∗ the estimates b̂∗1 and b̂∗2 would be

(a) b̂∗1 = 4, b̂∗2 = 5

(b) b̂∗1 = 4, b̂∗2 = .5

(c) b̂∗1 = 4, b̂∗2 = .05

(d) b̂∗1 = .4, b̂∗2 = .5

(e) b̂∗1 = .4, b̂∗2 = 5

Answer: the correct answer is (c).
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