Econ 103: Introduction to Econometrics Week 8

Francisco Díaz-Valdés*

Fall 2025

1 Measuring Goodness-of-Fit

This analysis can also be done using the Multiple Regression Framework. For simplicity, consider the simple linear regression model and that assumptions SR1-SR6 hold.

$$y_i = \beta_1 + \beta_2 x_i + \varepsilon_i$$

How much does the variation in x_i explain the variation of y_i ? Let's separate y_i into two components: explainable and unexplainable. That is,

$$y_i = \underbrace{\mathbb{E}[y_i \mid \boldsymbol{x}]}_{\text{explainable}} + \underbrace{\varepsilon_i}_{\text{unexplainable}}$$

where $\mathbb{E}[y_i \mid \boldsymbol{x}]$ is the explainable or systematic component of y_i and ε_i is the random, unsystematic, and unexplainable component of y_i . While both components are unobservable to us, we can estimate the unknown parameters β_1 and β_2 , and the residual of the estimation $\hat{\varepsilon}_i$. Once the model is estimated, we can write:

$$y_i = \hat{y}_i + \hat{\varepsilon}_i$$

where $\hat{y}_i = \hat{\beta}_1 + \hat{\beta}_2 x_i = \hat{\mathbb{E}}[y_i \mid \boldsymbol{x}]$ and $\hat{\varepsilon}_i = y_i - \hat{y}_i$. Following the decomposition:

$$y_{i} = \hat{y}_{i} + \hat{\varepsilon}_{i} \quad / - \overline{y}$$

$$\Leftrightarrow \quad y_{i} - \overline{y} = \hat{y}_{i} - \overline{y} + \hat{\varepsilon}_{i} \quad / ()^{2}$$

$$\Leftrightarrow \quad (y_{i} - \overline{y})^{2} = (\hat{y}_{i} - \overline{y})^{2} + 2(\hat{y}_{i} - \overline{y})\hat{\varepsilon}_{i} + \hat{\varepsilon}_{i}^{2} \quad / \sum_{i=1}^{N} \hat{\varepsilon}_{i}^{2} + 2\sum_{i=1}^{N} (\hat{y}_{i} - \overline{y})\hat{\varepsilon}_{i}$$

$$\Leftrightarrow \quad \sum_{i=1}^{N} (y_{i} - \overline{y})^{2} = \sum_{i=1}^{N} (\hat{y}_{i} - \overline{y})^{2} + \sum_{i=1}^{N} \hat{\varepsilon}_{i}^{2} + 2\sum_{i=1}^{N} (\hat{y}_{i} - \overline{y})\hat{\varepsilon}_{i}$$

Before continuing with the decomposition, it is worth noticing that $2\sum_{i=1}^{N}(\hat{y}_i - \overline{y})\hat{\varepsilon}_i = 0$ (why?¹)

Continuing the work with the decomposition:

$$\underbrace{\sum_{i=1}^{N} (y_i - \overline{y})^2}_{\text{=SST}} = \underbrace{\sum_{i=1}^{N} (\hat{y}_i - \overline{y})^2}_{\text{=SSR}} + \underbrace{\sum_{i=1}^{N} \hat{\varepsilon}_i^2}_{\text{=SSE}}$$

^{*}Many thanks to all previous TAs for providing the notes. All mistakes are my own. Please contact me at fdiaz-valdes@g.ucla.edu if you spot any typos or mistakes. This TA is based on your textbook Principles of Econometrics.

¹Hint: Use the two First-Order conditions when the model has an intercept.

UCLA, Fall 2025 Econ 103

Where,

(a) SST: Total sum of squares. A measure of the total variation of y.

- (b) SSR: Sum of squares due to the regression. Part of the total variation of y that is "explained" by the regression.
- (c) SSE: Sum of squares due to error. Part of the total variation of y that the regression cannot explain For convenience, we can write the decomposition as follows: SST = SSR + SSE.

Define R^2 as the fraction of the total variation of y that is "explained" by the variation of x within the regression model. Some people call R^2 as the **coefficient of determination**. Formally,

$$R^2 = \frac{\text{SSR}}{\text{SST}} = 1 - \frac{\text{SSE}}{\text{SST}}$$

Note that $0 \le R^2 \le 1$. The closer the R^2 is to 1, the closer the sample values of y_i will lie on the fitted regression.

Caution: The R^2 remains the same or increases when we add more regressors to the model. That is, generally speaking, the more regressors the model has, the higher the R^2 . This renders the R^2 "useless" as a measure of how good a model is, as the R^2 can be arbitrarily increased. For this reason, Mordecai Ezekiel proposed the adjusted R^2 . The intuition of the adjusted R^2 is that it attempts to compensate for the increase in the R^2 due to adding regressors by penalizing it. Formally, denoting by \overline{R}^2 (or by $R^2_{\rm adj}$) is given by:

$$\overline{R}^2 = 1 - (1 - R^2) \frac{N - 1}{N - K}$$

Where N is the number of observations, and K is the number of regressors (the number of β s to be estimated). It can be shown that \overline{R}^2 may be negative if too many insignificant regressors are added.

Exercises:

- 1. In the simple regression model, show that the squared of the sample correlation between x and y, $\hat{\rho}(x,y)^2$, is equal to R^2 .
- 2. Suppose you run a regression with only a constant, without any regressors. Does it make sense to try to compute the \mathbb{R}^2 ? What would be its value?
- 3. Another definition for the adjusted R^2 is:

$$\overline{R}^2 = 1 - \frac{(SSE)/(N-K)}{(SST)/(N-1)}$$

Show that this definition is equal to the one given before.

UCLA, Fall 2025 Econ 103

2 Multiple Regression Framework

The Multiple Regression Framework extends the Simple Regression Model by allowing the incorporation of more regressors. Generally speaking, a Multiple Regression Model with k regressors is given by (note that the constant is also a regressor: $x_{i1} = 1$ for all i):

$$y_i = \beta_1 + \beta_2 x_{i2} + \beta_3 x_{i3} + \ldots + \beta_k x_{ik} + \varepsilon_i$$

We will make the following assumptions:

• MR1: Econometric model:

We have observations $(y_i, x_i 1, x_i 2, ..., x_i k)$ for every individual i = 1, ..., N, where $x_{i1} = 1 \forall i$, and these observations satisfy

$$y_i = \beta_1 + \beta_2 x_{i2} + \beta_3 x_{i3} + \ldots + \beta_k x_{ik} + \varepsilon_i$$

• MR2: Strict Exogeneity:

We will assume that $\mathbb{E}[\varepsilon_i \mid x_1, \dots, x_k] = 0$, this implies that $\mathbb{E}[\varepsilon_i] = 0$ and $\text{cov}(\varepsilon_i, x_{jh}) = 0$, for $h = 1, \dots, k$, and $(i, j) = 1, \dots, N$.

This assumption allows us to write:

$$\mathbb{E}[y_i \mid (x_1, \dots, x_k)] = \beta_1 + \beta_2 x_{i2} + \beta_3 x_{i3} + \dots + \beta_k x_{ik}$$

Thus, we can obtain the marginal effects, just as in the case with the simple regression model:

$$\frac{\partial \mathbb{E}[y_i \mid (x_1, \dots, x_k)]}{\partial x_j} = \beta_j$$

When taking the partial derivative, we are holding $x_{-j} = (x_1, \dots, x_{j-1}, x_{j+1}, \dots, x_k)$ constant.

• MR3: Conditional Homoskedasticity:

We assume that $\mathbb{V}(\varepsilon_i \mid (x_{i1}, \dots, x_{ik})) = \sigma^2$ for every $i = 1, \dots, N$.

• MR4: Conditional Uncorrelated Errors:

We assume that $cov(\varepsilon_i, \varepsilon_j \mid x_1, \dots, x_k) = 0$ for every $i \neq j$. If i = j, we get that

$$\operatorname{cov}(\varepsilon_i, \varepsilon_i \mid x_1, \dots, x_k) = \mathbb{V}(\varepsilon_i \mid (x_{i1}, \dots, x_{ik})) = \sigma^2$$

• MR5: No Perfect Multicollinearity:

This means that there are no such constants (c_1, \ldots, c_k) , all different from zero, such that,

$$c_1x_{i1} + c_2x_{i2} + \ldots + c_kx_{ik} = 0$$
, for all i

Intuitively, there is no redundant information. If one regressor can be constructed using the others, then it provides no new information and has to be removed from the model. A classic example of perfect multicollinearity problem arising is when you run a regression with a constant, a dummy variable and the complement of the dummy variable. Note that we can have multiple dummy variables for different categories, the problem arises when you add the complement of a dummy variable.

For example, the following model will present perfect multicollinearity:

$$y_i = \beta_1 + \beta_2 D_i + \beta_3 D_i^c + \varepsilon_i$$

UCLA, Fall 2025 Econ 103

where,

$$D_i = \left\{ \begin{array}{cc} 1 & \text{if} & i \in A \\ 0 & \text{if} & i \notin A \end{array} \right.$$

and,

$$D_i^c = \begin{cases} 0 & \text{if} \quad i \in A \\ 1 & \text{if} \quad i \notin A \end{cases}$$

• MR6 (Optional): Error Normality:

We assume that conditional on the regressors:

$$\varepsilon \mid (x_1, \dots, x_k) \sim \mathcal{N}(0, \sigma^2)$$

Thus,

$$y \mid (x_1, \dots, x_k) \sim \mathcal{N}\Big(\mathbb{E}[y \mid (x_1, \dots, x_k)], \sigma^2\Big)$$

2.1 How do we estimate the Multiple Regression Model?

Same as in the simple regression model, we minimize this loss function:

$$\min_{\beta_1,\ldots,\beta_k} \mathcal{L}(\beta_1,\ldots,\beta_k) = \min_{\beta_1,\ldots,\beta_k} \sum_{i=1}^N \left(y_i - (\beta_1 + \beta_2 x_{i2} + \ldots + \beta_k x_{ik}) \right)^2$$

Thus, we have k equations (the partial derivatives of \mathcal{L} for each β) and k unknowns.

Doing the minimization by hand and using the summation notation is time consuming. Instead, what the computer does is the following. Define,

$$\mathbf{Y} = \begin{bmatrix} y_1 \\ \vdots \\ y_N \end{bmatrix}_{N \times 1}, \quad \mathbf{X} = \begin{bmatrix} x_{11} & \dots & x_{1k} \\ \vdots & \ddots & \vdots \\ x_{N1} & \dots & x_{Nk} \end{bmatrix}_{N \times k}, \quad \boldsymbol{\beta} = \begin{bmatrix} \beta_1 \\ \vdots \\ \beta_N \end{bmatrix}_{N \times 1}, \quad \boldsymbol{\varepsilon} = \begin{bmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_N \end{bmatrix}_{N \times 1}$$

Then, we write the model as

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$$

And then, we minimize

$$\min_{\boldsymbol{\beta}} \ \mathcal{L}(\boldsymbol{\beta}) = \min_{\boldsymbol{\beta}} \ (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})^T (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})$$

After taking the first-order condition and some algebra, we get that the solution is given by

$$\boldsymbol{\beta} = (\mathbf{X}^T \mathbf{X})^{-1} (\mathbf{X}^T \mathbf{Y})$$

If Linear Algebra is not a requisite for taking this class, almost surely you will not be asked to do this. However, keep in mind that this is what the computer is doing when you ran a regression.

Also, this illustrate why perfect multicollinearity is a problem. When perfect multicollinearity is present, the matrix $\mathbf{X}^T\mathbf{X}$ does not have an inverse, so we cannot compute $\boldsymbol{\beta}$.